
Bluetooth Low Energy in C++ for nRFx Microcontrollers

1st Edition

Tony Gaitatzis

BackupBrain Publishing, 2017

ISBN: 978-1-7751280-7-6

backupbrain.co

i

http://backupbrain.co
http://backupbrain.co

Bluetooth Low Energy in C++ for nRFx Microcontrollers

by Tony Gaitatzis

Copyright © 2015 All Rights Reserved

All rights reserved. This book or any portion thereof may not be reproduced or used
in any manner whatsoever without the express written permission of the publisher ex-
cept for the use of brief quotations in a book review. For permission requests, write
to the publisher, addressed “Bluetooth Arduino Book Reprint Request,” at the ad-
dress below.

backupbrain@gmail.com

This book contains code samples available under the MIT License, printed below:

Permission is hereby granted, free of charge, to any person obtaining a copy of this
software and associated documentation files (the "Software"), to deal in the Software
without restriction, including without limitation the rights to use, copy, modify, merge,
publish, distribute, sublicense, and/or sell copies of the Software, and to permit per-
sons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies
or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

ii

mailto:backupbrain@gmail.com?subject=Bluetooth%20iOS%20Book%20Reprint%20Request
mailto:backupbrain@gmail.com?subject=Bluetooth%20iOS%20Book%20Reprint%20Request

Services and Characteristics

Before data can be transmitted back and forth between a Central and Peripheral, the
Peripheral must host a GATT Profile. That is, the Peripheral must have Services and
Characteristics.

Identifying Services and Characteristics

Each Service and Characteristic is identified by a Universally Unique Identifier (UUID).
The UUID follows the pattern 0000XXXX-0000-1000-8000-00805f9b34fb, so that a
32-bit UUID 00002a56-0000-1000-8000-00805f9b34fb can be represented as
0x2a56.

Some UUIDs are reserved for specific use. For instance any Characteristic with the
16-bit UUID 0x2a35 (or the 32-bit UUID 00002a35-0000-1000-8000-00805f9b34fb) is
implied to be a blood pressure reading.

For a list of reserved Service UUIDs, see Appendix IV: Reserved GATT Services.

For a list of reserved Characteristic UUIDs, see Appendix V: Reserved GATT Char-
acteristics.

Generic Attribute Profile

Services and Characteristics describe a tree of data access points on the peripheral.
The tree of Services and Characteristics is known as the Generic Attribute (GATT) Pro-
file. It may be useful to think of the GATT as being similar to a folder and file tree (Fig-
ure 6-1).

52

 Service/ 
	 Characterstic 
	 Characterstic 
	 Characterstic 

 Service/ 
	 Characterstic 
	 Characterstic 
	 Characterstic

Figure 6-1. GATT Profile filesystem metaphor

Characteristics act as channels that can be communicated on, and Services act as
containers for Characteristics. A top level Service is called a Primary service, and a
Service that is within another Service is called a Secondary Service.

Permissions

Characteristics can be configured with the following attributes, which define what the
Characteristic is capable of doing (Table 6-1):

53

Table 6-1. Characteristic Permissions

Descriptor Description

Read

Write

Notify

Central can read this Characteristic, Peripheral can set the value.

Central can write to this Characteristic, Peripheral will be notified when
the Characteristic value changes and Central will be notified when the
write operation has occurred.

Central will be notified when Peripheral changes the value.

Because the GATT Profile is hosted on the Peripheral, the terms used to describe a
Characteristic’s permissions are relative to how the Peripheral accesses that Charac-
teristic. Therefore, when a Central uploads data to the Peripheral, the Peripheral can
“read” from the Characteristic. The Peripheral “writes” new data to the Characteris-
tic, and can “notify” the Central that the data is altered.

Data Length and Speed

It is worth noting that Bluetooth Low Energy has a maximum data packet size of 20
bytes, with a 1 Mbit/s speed.

Programming the Peripheral
The Generic Attribute Profile is defined by setting the UUID and permissions of the
Peripheral’s Services and Characteristics.

Characteristics can be configured with the following permissions (Table 6-2):

54

Table 6-2. BLECharacteristic Permissions

Value Permission Description

BLE_GATT_CHAR_PROPERTIES_READ Read

BLE_GATT_CHAR_PROPERTIES_WRITE
Write

BLE_GATT_CHAR_PROPERTIES_WRITE_
WITHOUT_RESPONSE

Write

BLE_GATT_CHAR_PROPERTIES_NOTIFY Notify

Central can read data altered by the
Peripheral

Central can send data, Peripheral
reads

Central can write to this Characteristic,
Peripheral is not notified of success

Central is notified as a result of a
change

 
Characteristics have a maximum length of 20 bytes. Since 16 bit and 8-bit data types
are easy to pass around in C++, we will be using uint16_t (unsigned 16-bit integer)
and uint8_t (unsigned 8-bit integer) values in the examples. Any data type including
custom byte buffers can be transmitted and assembled over BLE.

Define a Service with UUID 180c (an unregistered generic UUID):

BLEService service("180C");

 
or

BLEService service("0000180C-000-1000-8000-00805f9-b34fb");

The first method lets the Peripheral automatically generate most of the UUID, and the
second method forces the Peripheral to use a particular UUID. The first method is
simpler but less precise. The second method is precise and useful for projects where
there is a need to share the UUID with outside people or APIs.

55

Certain UUIDs are unavailable for use. If a bad UUID is chosen, the Peripheral may
crash without warning.

There are several types of Characteristic available in nRF51822, depending on the
type of data you need to transmit. Arrays, Integers, Floats, Booleans, and other data
types have their own Characteristic constructors.

For instance, this 2-byte long Characteristic with UUID 1801 can be read by a Central
and can notify the Central of changes:

static char readValue[2] = {0};

ReadOnlyArrayGattCharacteristic

 <uint8_t, sizeof(readValue)> readCharacteristic(

 "1801",

 (uint8_t *)readValue,

 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_READ | \

 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY

);

This 8-byte long Characteristic with UUID 2A56 (Digital Characteristic) can be written
to by the Central:

static char writeValue[8] = {0};

WriteOnlyArrayGattCharacteristic

 <uint8_t, sizeof(writeValue)>writeCharacteristic(

 writeCharacteristicUuid,

 (uint8_t *)writeValue,

 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_WRITE);

Here are some examples of various data type specific Characteristics that can be cre-
ated:

int properties = BLERead | BLEWrite | BLENotify;

ReadWriteBooleanCharacteristic booleanCharacteristic(

 UUID,

56

 properties,

 maxLen

);

ReadWriteIntegerCharacteristic integerDataCharacteristicName(

 UUID,

 properties,

 maxLen

);

BLEUnsignedIntCharacteristic yourCharacteristicName(

 UUID,

 properties,

 maxLen

);

BLELongCharacteristic yourCharacteristicName(

 UUID,

 properties,

 maxLen

);

BLEUnsignedLongCharacteristic yourCharacteristicName(

 UUID,

 properties,

 maxLen

);

BLEFloatCharacteristic yourCharacteristicName(UUID, properties, maxLen);

The Services and Characteristics are added to the GATT Profile via the BLEPeriph-
eral. By adding the two Characteristics after the Service, they are assumed to be part
of the same Service. This must happen before blePeripheral.begin().

...

BLE &ble = BLE::Instance(BLE::DEFAULT_INSTANCE);

...

// Set up custom service

static const uint16_t customServiceUuid = 0x180C;

GattCharacteristic *characteristics[] = {

57

 &readCharacteristic, &writeCharacteristic

};

GattService customService(

 customServiceUuid,

 characteristics,

 sizeof(characteristics) / sizeof(GattCharacteristic *)

);

ble.addService(customService);

...

ble.gap().startAdvertising();

...

Putting It All Together

Create a new sketch named ble_characteristics and copy the following code.

Example 6-1. sketches/ble_characteristics/ble_characteristics.c

#include "mbed.h"

#include "ble/BLE.h"

/** User interface I/O **/

// instantiate USB Serial

Serial serial(USBTX, USBRX);

// Status LED

DigitalOut statusLed(LED1, 0);

// Timer for blinking the statusLed

Ticker ticker;

/** Bluetooth Peripheral Properties **/

// Broadcast name

58

const static char BROADCAST_NAME[] = "MyDevice";

// Device Information UUID

static const uint16_t deviceInformationServiceUuid = 0x180a;

// Battery Level UUID

static const uint16_t batteryLevelServiceUuid = 0x180f;

// array of all Service UUIDs

static const uint16_t uuid16_list[] = { customServiceUuid };

// Number of bytes in Characteristic

static const uint8_t characteristicLength = 20;

// Device Name Characteristic UUID

static const uint16_t deviceNameCharacteristicUuid = 0x2a00;

// Modul Number Characteristic UUID

static const uint16_t modelNumberCharacteristicUuid = 0x2a24;

// Serial Number Characteristic UUID

static const uint16_t serialNumberCharacteristicUuid = 0x2a04;

// Battery Level Characteristic UUID

static const uint16_t batteryLevelCharacteristicUuid = 0x2a19;

// model and serial numbers

static const char* modelNumber = "1AB2";

static const char* serialNumber = "1234";

int batteryLevel = 100;

/** Functions **/

/**

 * visually signal that program has not crashed

 */

void blinkHeartbeat(void);

/**

 * Callback triggered when the ble initialization process has finished

 *

 * @param[in] params Information about the initialized Peripheral

 */

void onBluetoothInitialized(

59

 BLE::InitializationCompleteCallbackContext *params

);

/**

 * Callback handler when a Central has disconnected

 *

 * @param[i] params Information about the connection

 */

void onCentralDisconnected(

 const Gap::DisconnectionCallbackParams_t *params

);

/** Build Service and Characteristic Relationships **/

// Create a read/write/notify Characteristic

static uint8_t deviceNameCharacteristicValue[characteristicLength] = \

 BROADCAST_NAME;

ReadOnlyArrayGattCharacteristic<uint8_t, sizeof(characteristicValue)> \

 deviceNameCharacteristic(

 deviceNameCharacteristicUuid,

 characteristicValue);

static uint8_t modelNumberCharacteristicValue[characteristicLength] = \

 modelNumber;

ReadOnlyArrayGattCharacteristic<uint8_t, sizeof(characteristicValue)> \

 modelNumberCharacteristic(

 modelNumberCharacteristicUuid,

 characteristicValue);

static uint8_t serialNumberCharacteristicValue[characteristicLength] = \

 serialNumber;

ReadOnlyArrayGattCharacteristic<uint8_t, sizeof(characteristicValue)> \

 serialNumberCharacteristic(

 serialNumberCharacteristicUuid,

 characteristicValue);

60

// Bind Characteristics to Services

GattCharacteristic *deviceInformationCharacteristics[] = {

 &deviceNameCharacteristic,

 &modelNumberCharacteristic,

 serialNumberCharacteristic

};

GattService deviceInformationService(

 deviceInformationServiceUuid,

 deviceInformationCharacteristics,

 sizeof(deviceInformationCharacteristics) / \

 sizeof(GattCharacteristic *)

);

static uint8_t batteryLevelCharacteristicValue = batteryLevel;

ReadOnlyGattCharacteristic<uint8_t, sizeof(characteristicValue)> \

 batteryLevelCharacteristic(

 serialNumberCharacteristicUuid,

 characteristicValue,

 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_READ | \

 GattCharacteristic::BLE_GATT_CHAR_PROPERTIES_NOTIFY

);

GattCharacteristic *batteryLevelCharateristics[] = {

 &batteryLevelCharacteristic

}

GattService batteryLevelService(

 batteryLevelServiceUuid,

 batteryLevelCharateristics,

 sizeof(batteryLevelCharateristics) / sizeof(GattCharacteristic *)

);

/**

 * Main program and loop

 */

int main(void) {

61

 serial.baud(9600);

 serial.printf("Starting Peripheral\r\n");

 ticker.attach(blinkHeartbeat, 1); // Blink status led every 1 second

 // initialized Bluetooth Radio

 BLE &ble = BLE::Instance(BLE::DEFAULT_INSTANCE);

 ble.init(onBluetoothInitialized);

 // wait for Bluetooth Radio to be initialized

 while (ble.hasInitialized() == false);

 while (1) {

 // save power when possible

 ble.waitForEvent();

 }

}

void blinkHeartbeat(void) {

 /* Do blinky on LED1 to indicate system aliveness. */

 statusLed = !statusLed;

}

void onBluetoothInitialized(

 BLE::InitializationCompleteCallbackContext *params)

{

 BLE& ble = params->ble;

 ble_error_t error = params->error;

 // quit if there's a problem

 if (error != BLE_ERROR_NONE) {

 return;

 }

 // Ensure that it is the default instance of BLE

 if(ble.getInstanceID() != BLE::DEFAULT_INSTANCE) {

 return;

 }

 serial.printf("Describing Peripheral...");

 // attach Services

62

 ble.addService(customService);

 // process disconnections with a callback

 ble.gap().onDisconnection(onCentralDisconnected);

 // advertising parametirs

 ble.gap().accumulateAdvertisingPayload(

 // Device is Peripheral only

 GapAdvertisingData::BREDR_NOT_SUPPORTED |

 // always discoverable

 GapAdvertisingData::LE_GENERAL_DISCOVERABLE);

 // broadcast name

 ble.gap().accumulateAdvertisingPayload(

 GapAdvertisingData::COMPLETE_LOCAL_NAME,

 (uint8_t *)BROADCAST_NAME, sizeof(BROADCAST_NAME)

);

 // advertise services

 ble.gap().accumulateAdvertisingPayload(

 GapAdvertisingData::COMPLETE_LIST_16BIT_SERVICE_IDS,

 (uint8_t *)uuid16_list, sizeof(uuid16_list)

);

 // allow connections

 ble.gap().setAdvertisingType(

 GapAdvertisingParams::ADV_CONNECTABLE_UNDIRECTED);

 // advertise every 1000ms

 ble.gap().setAdvertisingInterval(1000); // 1000ms

 // set the GATT values

 ble.gattServer().write(

 deviceNameCharacteristic.getValueHandle(),

 BROADCAST_NAME,

 characteristicLength

);

 ble.gattServer().write(

 modelNumberCharacteristic.getValueHandle(),

 modelNumber,

 characteristicLength

63

);

 ble.gattServer().write(

 serialNumber.getValueHandle(),

 serialNumber,

 characteristicLength

);

 ble.gattServer().write(

 batteryLevelCharateristics.getValueHandle(),

 batteryLevel,

 characteristicLength

);

 // begin advertising

 ble.gap().startAdvertising();

 serial.printf(" done\r\n");

}

void onCentralDisconnected(const Gap::DisconnectionCallbackParams_t *params)

{

 BLE::Instance().gap().startAdvertising();

 serial.printf("Central disconnected\r\n");

}

When run, this sketch will create a Peripheral that advertises as “MyDevice” and will
have a GATT profile featuring a single Characteristic with read and write permissions
(Figure 6-2).

 Device Information Service: 000180a-000-1000-8000-00805f9-b34fb 
 Device Name Charateristic: 0002a00-000-1000-8000-00805f9-b34fb 
 Model Number Charateristic: 0002a24-000-1000-8000-00805f9-b34fb 
 Serial Number Charateristic: 0002a04-000-1000-8000-00805f9-b34fb 

 Battery Level Service: 000180f-000-1000-8000-00805f9-b34fb 
 Battery Level Charateristic: 0002a19-000-1000-8000-00805f9-b34fb 

64

Other Books in this Series

If you are interested in programming Bluetooth Low Energy Devices, please check
out the other books in this series or visit bluetoothlowenergy.co: 

Bluetooth Low Energy in Android Java

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-4-5 

Bluetooth Low Energy in Arduino 101

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-6-9 

Bluetooth Low Energy in iOS Swift

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-5-2 

Bluetooth Low Energy in C++ for nRF Microcontrollers

Tony Gaitatzis, 2017

ISBN: 978-1-7751280-7-6

92

http://bluetoothlowenergy.co
http://bluetoothlowenergy.co

